

Deep Learning

15 Self-Attention & Transformers - II

Dr. Konda Reddy Mopuri Dept. of Al, IIT Hyderabad Jan-May 2024

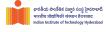
① The attention layer has N i/p tokens and N o/p tokens, each of D dimensions

- ① The attention layer has N i/p tokens and N o/p tokens, each of D dimensions
- ② The overall dimension of i/p (or, o/p) is N.D

- ① The attention layer has N i/p tokens and N o/p tokens, each of D dimensions
- ② The overall dimension of i/p (or, o/p) is N.D
- If we used a single fully-connected layer

- ① The attention layer has N i/p tokens and N o/p tokens, each of D dimensions
- ② The overall dimension of i/p (or, o/p) is N.D
- 3 If we used a single fully-connected layer
 - ullet Will have $\mathcal{O}(N^2.D^2)$ independent parameters

- ① The attention layer has N i/p tokens and N o/p tokens, each of D dimensions
- ② The overall dimension of i/p (or, o/p) is N.D
- 3 If we used a single fully-connected layer
 - ullet Will have $\mathcal{O}(N^2.D^2)$ independent parameters
 - ullet Computational cost for one forward pass: $\mathcal{O}(N^2.D^2)$



f 1 In an attention layer, $W^{(Q)},W^{(K)},W^{(V)}$ are shared across all the i/p tokens



- $\ \, \textbf{1}$ In an attention layer, $W^{(Q)},W^{(K)},W^{(V)}$ are shared across all the i/p tokens
- ② \rightarrow No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$

- $\ \, \textbf{1}$ In an attention layer, $W^{(Q)},W^{(K)},W^{(V)}$ are shared across all the i/p tokens
- \bigcirc No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- For the N i/p tokens

- ① In an attention layer, $W^{(Q)},W^{(K)},W^{(V)}$ are shared across all the i/p tokens
- \bigcirc \bigcirc No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- For the N i/p tokens
 - \bullet No. of computations required for computing the dot products in self-attention layer $\mathcal{O}(N^2.D)$

- ① In an attention layer, $W^{(Q)},W^{(K)},W^{(V)}$ are shared across all the i/p tokens
- \bigcirc \bigcirc No. of in independent parameters is $\mathcal{O}(D^2)$ $(D_v \approx D_k \approx D)$
- For the N i/p tokens
 - No. of computations required for computing the dot products in self-attention layer $\mathcal{O}(N^2.D)$
- **④** Subsequent Neural Network layer has D inputs and D outputs → parameter = $\mathcal{O}(D^2)$ and computational cost of $\mathcal{O}(N.D^2)$

① The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \to Transformer is permutation invariant

- $\ \ \,$ The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \to Transformer is permutation invariant
- Strong limitation to processing the sequential data

- $\ \, \textbf{1}$ The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \to Transformer is permutation invariant
- Strong limitation to processing the sequential data
- 3 CSK plays better, not MI vs. MI plays better, not CSK

- $\ \, \textbf{1}$ The weights $(W^{(Q)},W^{(K)},W^{(V)})$ are shared across the i/p tokens \to Transformer is permutation invariant
- Strong limitation to processing the sequential data
- 3 CSK plays better, not MI vs. MI plays better, not CSK
- 4 We need a way to inject the order information

① Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)

- ① Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- ② Obvious way is to concatenate

- ① Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- Obvious way is to concatenate
 - Increased dimensions and computations

- ① Without disturbing the design of the transformer, we may encode the position information (r_n) along with the data (tokens) (x_n)
- Obvious way is to concatenate
 - Increased dimensions and computations
- 3 Instead, add them $\tilde{x_n} = x_n + r_n$

Would it not corrupt the data?

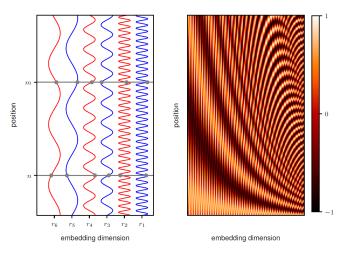
- Would it not corrupt the data?
 - High dimensionality keeps them separate

- Would it not corrupt the data?
 - High dimensionality keeps them separate
 - ullet Skip connections retain the r_n across the layers

$$r_{ni} = \begin{cases} \sin\left(\frac{n}{L^{i/D}}\right), & \text{if } i \text{ is even,} \\ \cos\left(\frac{n}{L^{(i-1)/D}}\right), & \text{if } i \text{ is odd.} \end{cases}$$

The Bishop's book



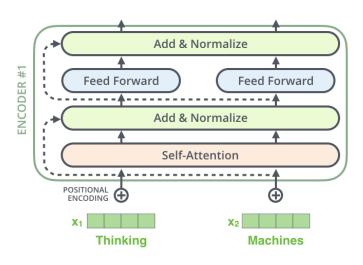


The Bishop's book



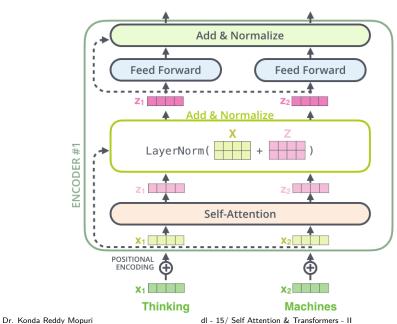
Credits: Jay Alammar

Residuals in the Encoder

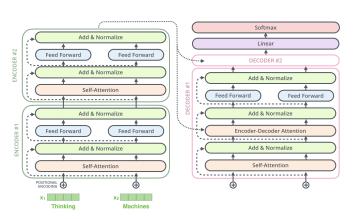


Credits: Jay Alammar

Residuals in the Encoder



Tranformer-Decoder



Credits: Jay Alammar

Transformer-Decoder

 $\ \, \textbf{①} \,\,$ Self-attention here works in a slightly different way \rightarrow masks the future positions

Transformer-Decoder

- $\ \, \textbf{ } \ \, \ \, \textbf{ } \ \, \ \, \textbf{ } \ \, \ \, \textbf{ } \ \, \ \, \textbf{ } \ \, \ \, \textbf{ } \ \, \textbf{ }$
- Uses the top encoder's K and V vectors for its' encoder-decoder (cross) attention

Transformer-Decoder

- f O Self-attention here works in a slightly different way o masks the future positions
- Uses the top encoder's K and V vectors for its' encoder-decoder (cross) attention
- 3 Encoder-decoder attention layer borrows the queries from the layer below it